Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance.

Identifieur interne : 003267 ( Main/Exploration ); précédent : 003266; suivant : 003268

Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance.

Auteurs : Raymond Barbehenn [États-Unis] ; Chris Dukatz ; Chris Holt ; Austin Reese ; Olli Martiskainen ; Juha-Pekka Salminen ; Lynn Yip ; Lan Tran ; C Peter Constabel

Source :

RBID : pubmed:20680646

Descripteurs français

English descriptors

Abstract

Peroxidases (PODs) are believed to act as induced and constitutive defenses in plants against leaf-feeding insects. However, little work has examined the mode of action of PODs against insects. Putative mechanisms include the production of potentially antinutritive and/or toxic semiquinone free radicals and quinones (from the oxidation of phenolics), as well as increased leaf toughness. In this study, transgenic hybrid poplar saplings (Populus tremula × Populus alba) overexpressing horseradish peroxidase (HRP) were produced to examine the impact of elevated HRP levels on the performance and gut biochemistry of Lymantria dispar caterpillars. HRP-overexpressing poplars were more resistant to L. dispar than wild-type (WT) poplars when the level of a phenolic substrate of HRP (chlorogenic acid) was increased, but only when leaves had prior feeding damage. Damaged (induced) leaves produced increased amounts of hydrogen peroxide, which was used by HRP to increase the production of semiquinone radicals in the midguts of larvae. The decreased growth rates of larvae that fed on induced HRP-overexpressing poplars resulted from post-ingestive mechanisms, consistent with the action of HRP in their midguts. The toughness of HRP-overexpressing leaves was not significantly greater than that of WT leaves, whether or not they were induced. When leaves were coated with ellagitannins, induced HRP leaves also produced elevated levels of semiquinone radicals in the midgut. Decreased larval performance on induced HRP leaves in this case was due to post-ingestive mechanisms as well as decreased consumption. The results of this study provide the first demonstration that a POD is able to oxidize phenolics within an insect herbivore's gut, and further clarifies the chemical conditions that must be present for PODs to function as antiherbivore defenses.

DOI: 10.1007/s00442-010-1733-y
PubMed: 20680646


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance.</title>
<author>
<name sortKey="Barbehenn, Raymond" sort="Barbehenn, Raymond" uniqKey="Barbehenn R" first="Raymond" last="Barbehenn">Raymond Barbehenn</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA. rvb@umich.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dukatz, Chris" sort="Dukatz, Chris" uniqKey="Dukatz C" first="Chris" last="Dukatz">Chris Dukatz</name>
</author>
<author>
<name sortKey="Holt, Chris" sort="Holt, Chris" uniqKey="Holt C" first="Chris" last="Holt">Chris Holt</name>
</author>
<author>
<name sortKey="Reese, Austin" sort="Reese, Austin" uniqKey="Reese A" first="Austin" last="Reese">Austin Reese</name>
</author>
<author>
<name sortKey="Martiskainen, Olli" sort="Martiskainen, Olli" uniqKey="Martiskainen O" first="Olli" last="Martiskainen">Olli Martiskainen</name>
</author>
<author>
<name sortKey="Salminen, Juha Pekka" sort="Salminen, Juha Pekka" uniqKey="Salminen J" first="Juha-Pekka" last="Salminen">Juha-Pekka Salminen</name>
</author>
<author>
<name sortKey="Yip, Lynn" sort="Yip, Lynn" uniqKey="Yip L" first="Lynn" last="Yip">Lynn Yip</name>
</author>
<author>
<name sortKey="Tran, Lan" sort="Tran, Lan" uniqKey="Tran L" first="Lan" last="Tran">Lan Tran</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20680646</idno>
<idno type="pmid">20680646</idno>
<idno type="doi">10.1007/s00442-010-1733-y</idno>
<idno type="wicri:Area/Main/Corpus">003106</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003106</idno>
<idno type="wicri:Area/Main/Curation">003106</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003106</idno>
<idno type="wicri:Area/Main/Exploration">003106</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance.</title>
<author>
<name sortKey="Barbehenn, Raymond" sort="Barbehenn, Raymond" uniqKey="Barbehenn R" first="Raymond" last="Barbehenn">Raymond Barbehenn</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA. rvb@umich.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dukatz, Chris" sort="Dukatz, Chris" uniqKey="Dukatz C" first="Chris" last="Dukatz">Chris Dukatz</name>
</author>
<author>
<name sortKey="Holt, Chris" sort="Holt, Chris" uniqKey="Holt C" first="Chris" last="Holt">Chris Holt</name>
</author>
<author>
<name sortKey="Reese, Austin" sort="Reese, Austin" uniqKey="Reese A" first="Austin" last="Reese">Austin Reese</name>
</author>
<author>
<name sortKey="Martiskainen, Olli" sort="Martiskainen, Olli" uniqKey="Martiskainen O" first="Olli" last="Martiskainen">Olli Martiskainen</name>
</author>
<author>
<name sortKey="Salminen, Juha Pekka" sort="Salminen, Juha Pekka" uniqKey="Salminen J" first="Juha-Pekka" last="Salminen">Juha-Pekka Salminen</name>
</author>
<author>
<name sortKey="Yip, Lynn" sort="Yip, Lynn" uniqKey="Yip L" first="Lynn" last="Yip">Lynn Yip</name>
</author>
<author>
<name sortKey="Tran, Lan" sort="Tran, Lan" uniqKey="Tran L" first="Lan" last="Tran">Lan Tran</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Benzoquinones (metabolism)</term>
<term>Food Chain (MeSH)</term>
<term>Gastrointestinal Tract (metabolism)</term>
<term>Horseradish Peroxidase (genetics)</term>
<term>Larva (growth & development)</term>
<term>Larva (metabolism)</term>
<term>Lepidoptera (growth & development)</term>
<term>Lepidoptera (metabolism)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (enzymology)</term>
<term>Plant Leaves (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Benzoquinones (métabolisme)</term>
<term>Chaine alimentaire (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (enzymologie)</term>
<term>Feuilles de plante (génétique)</term>
<term>Horseradish peroxidase (génétique)</term>
<term>Larve (croissance et développement)</term>
<term>Larve (métabolisme)</term>
<term>Lepidoptera (croissance et développement)</term>
<term>Lepidoptera (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Tube digestif (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Horseradish Peroxidase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Benzoquinones</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Larve</term>
<term>Lepidoptera</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Larva</term>
<term>Lepidoptera</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Horseradish peroxidase</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Gastrointestinal Tract</term>
<term>Larva</term>
<term>Lepidoptera</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Benzoquinones</term>
<term>Larve</term>
<term>Lepidoptera</term>
<term>Tube digestif</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Food Chain</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Chaine alimentaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Peroxidases (PODs) are believed to act as induced and constitutive defenses in plants against leaf-feeding insects. However, little work has examined the mode of action of PODs against insects. Putative mechanisms include the production of potentially antinutritive and/or toxic semiquinone free radicals and quinones (from the oxidation of phenolics), as well as increased leaf toughness. In this study, transgenic hybrid poplar saplings (Populus tremula × Populus alba) overexpressing horseradish peroxidase (HRP) were produced to examine the impact of elevated HRP levels on the performance and gut biochemistry of Lymantria dispar caterpillars. HRP-overexpressing poplars were more resistant to L. dispar than wild-type (WT) poplars when the level of a phenolic substrate of HRP (chlorogenic acid) was increased, but only when leaves had prior feeding damage. Damaged (induced) leaves produced increased amounts of hydrogen peroxide, which was used by HRP to increase the production of semiquinone radicals in the midguts of larvae. The decreased growth rates of larvae that fed on induced HRP-overexpressing poplars resulted from post-ingestive mechanisms, consistent with the action of HRP in their midguts. The toughness of HRP-overexpressing leaves was not significantly greater than that of WT leaves, whether or not they were induced. When leaves were coated with ellagitannins, induced HRP leaves also produced elevated levels of semiquinone radicals in the midgut. Decreased larval performance on induced HRP leaves in this case was due to post-ingestive mechanisms as well as decreased consumption. The results of this study provide the first demonstration that a POD is able to oxidize phenolics within an insect herbivore's gut, and further clarifies the chemical conditions that must be present for PODs to function as antiherbivore defenses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20680646</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>02</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>164</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance.</ArticleTitle>
<Pagination>
<MedlinePgn>993-1004</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-010-1733-y</ELocationID>
<Abstract>
<AbstractText>Peroxidases (PODs) are believed to act as induced and constitutive defenses in plants against leaf-feeding insects. However, little work has examined the mode of action of PODs against insects. Putative mechanisms include the production of potentially antinutritive and/or toxic semiquinone free radicals and quinones (from the oxidation of phenolics), as well as increased leaf toughness. In this study, transgenic hybrid poplar saplings (Populus tremula × Populus alba) overexpressing horseradish peroxidase (HRP) were produced to examine the impact of elevated HRP levels on the performance and gut biochemistry of Lymantria dispar caterpillars. HRP-overexpressing poplars were more resistant to L. dispar than wild-type (WT) poplars when the level of a phenolic substrate of HRP (chlorogenic acid) was increased, but only when leaves had prior feeding damage. Damaged (induced) leaves produced increased amounts of hydrogen peroxide, which was used by HRP to increase the production of semiquinone radicals in the midguts of larvae. The decreased growth rates of larvae that fed on induced HRP-overexpressing poplars resulted from post-ingestive mechanisms, consistent with the action of HRP in their midguts. The toughness of HRP-overexpressing leaves was not significantly greater than that of WT leaves, whether or not they were induced. When leaves were coated with ellagitannins, induced HRP leaves also produced elevated levels of semiquinone radicals in the midgut. Decreased larval performance on induced HRP leaves in this case was due to post-ingestive mechanisms as well as decreased consumption. The results of this study provide the first demonstration that a POD is able to oxidize phenolics within an insect herbivore's gut, and further clarifies the chemical conditions that must be present for PODs to function as antiherbivore defenses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barbehenn</LastName>
<ForeName>Raymond</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA. rvb@umich.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dukatz</LastName>
<ForeName>Chris</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holt</LastName>
<ForeName>Chris</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reese</LastName>
<ForeName>Austin</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martiskainen</LastName>
<ForeName>Olli</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salminen</LastName>
<ForeName>Juha-Pekka</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yip</LastName>
<ForeName>Lynn</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tran</LastName>
<ForeName>Lan</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Constabel</LastName>
<ForeName>C Peter</ForeName>
<Initials>CP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>08</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016227">Benzoquinones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3225-29-4</RegistryNumber>
<NameOfSubstance UI="C025232">semiquinone radicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D006735">Horseradish Peroxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016227" MajorTopicYN="N">Benzoquinones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020387" MajorTopicYN="Y">Food Chain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D041981" MajorTopicYN="N">Gastrointestinal Tract</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006735" MajorTopicYN="N">Horseradish Peroxidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007915" MajorTopicYN="N">Lepidoptera</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>01</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20680646</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-010-1733-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chem Ecol. 1996 Oct;22(10):1767-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Oct;32(10):2253-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17019621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):683-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):1022-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16443697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998 Oct;120(3):481-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9827067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2007 Nov;154(1):129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17724619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 1998 Jul;54(7):712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9711237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2004 Jul;30(7):1363-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15503525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Jun;140(1):86-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15118901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Toxins. 1998;6(6):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10441031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Nov;220(1):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15309534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2009 Apr;55(4):297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19111746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2003 Oct;62(5-6):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12879300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jun;96(2):577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Biomed Sci Appl. 1999 Feb 19;723(1-2):81-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10080636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):924-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Jan;21(2):341-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7678769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;172(4):617-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Jan;154(4):725-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2001 Apr;47(4-5):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11166299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 1988;65(2):157-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2835188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1275-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):852-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 May;31(5):969-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16124227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Oct;32(10):2235-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1995 Oct;21(10):1511-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24233680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 25;96(11):6553-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10339626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Jun 1;414(1):115-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12745262</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
<name sortKey="Dukatz, Chris" sort="Dukatz, Chris" uniqKey="Dukatz C" first="Chris" last="Dukatz">Chris Dukatz</name>
<name sortKey="Holt, Chris" sort="Holt, Chris" uniqKey="Holt C" first="Chris" last="Holt">Chris Holt</name>
<name sortKey="Martiskainen, Olli" sort="Martiskainen, Olli" uniqKey="Martiskainen O" first="Olli" last="Martiskainen">Olli Martiskainen</name>
<name sortKey="Reese, Austin" sort="Reese, Austin" uniqKey="Reese A" first="Austin" last="Reese">Austin Reese</name>
<name sortKey="Salminen, Juha Pekka" sort="Salminen, Juha Pekka" uniqKey="Salminen J" first="Juha-Pekka" last="Salminen">Juha-Pekka Salminen</name>
<name sortKey="Tran, Lan" sort="Tran, Lan" uniqKey="Tran L" first="Lan" last="Tran">Lan Tran</name>
<name sortKey="Yip, Lynn" sort="Yip, Lynn" uniqKey="Yip L" first="Lynn" last="Yip">Lynn Yip</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Barbehenn, Raymond" sort="Barbehenn, Raymond" uniqKey="Barbehenn R" first="Raymond" last="Barbehenn">Raymond Barbehenn</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003267 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003267 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20680646
   |texte=   Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20680646" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020